Langsung ke konten utama

Imperfection in Weld (Cacat dalam Pengelasan)

Imperfections in welds

Commonly used steels are considered to be readily welded. However, these materials can be at risk from the following types of imperfection:
Other fabrication imperfections are lamellar tearing and liquation cracking but using modern steels and consumables, these types of defects are less likely to arise.
In discussing the main causes of imperfections, guidance is given on procedure and welder techniques for reducing the risk in arc welding.

Porosity

Porosity is formed by entrapment of discrete pockets of gas in the solidifying weld pool. The gas may originate from poor gas shielding, surface contaminants such as rust or grease, or insufficient deoxidants in the parent metal (autogenous weld), electrode or filler wire. A particularly severe form of porosity is 'wormholes', caused by gross surface contamination or welding with damp electrodes.
The presence of manganese and silicon in the parent metal, electrode and filler wire is beneficial as they act as deoxidants combining with entrapped air in the weld pool to form slag. Rimming steels with a high oxygen content, can only be welded satisfactorily with a consumable which adds aluminium to the weld pool.
To obtain sound porosity-free welds, the joint area should be cleaned and degreased before welding. Primer coatings should be removed unless considered suitable for welding by that particular process and procedure. When using gas shielded processes, the material surface demands more rigorous cleaning, such as by degreasing, grinding or machining, followed by final degreasing, and the arc must be protected from draughts.

Solidification cracking

Solidification cracks occur longitudinally as a result of the weld bead having insufficient strength to withstand the contraction stresses within the weld metal. Sulphur, phosphorus, and carbon pick up from the parent metal at high dilution increase the risk of weld metal (solidification) cracking especially in thick section and highly restrained joints. When welding high carbon and sulphur content steels, thin weld beads will be more susceptible to solidification cracking. However, a weld with a large depth to width ratio can also be susceptible. In this case, the centre of the weld, the last part to solidify, will have a high concentration of impurities increasing the risk of cracking.
Solidification cracking is best avoided by careful attention to the choice of consumable, welding parameters and welder technique. To minimise the risk, consumables with low carbon and impurity levels and relatively high manganese and silicon contents are preferred. High current density processes such as submerged-arc and CO 2 , are more likely to induce cracking. The welding parameters must produce an adequate depth to width ratio in butt welds, or throat thickness in fillet welds. High welding speeds also increase the risk as the amount of segregation and weld stresses will increase. The welder should ensure that there is a good joint fit-up so as to avoid bridging wide gaps. Surface contaminants, such as cutting oils, should be removed before welding.

Hydrogen cracking

A characteristic feature of high carbon and low alloy steels is that the HAZ immediately adjacent to the weld hardens on welding with an attendant risk of cold (hydrogen) cracking. Although the risk of cracking is determined by the level of hydrogen produced by the welding process, susceptibility will also depend upon several contributory factors:
  • material composition (carbon equivalent);
  • section thickness;
  • arc energy (heat) input;
  • degree of restraint.
The amount of hydrogen generated is determined by the electrode type and the process. Basic electrodes generate less hydrogen than rutile electrodes (MMA) and the gas shielded processes (MIG and TIG) produce only a small amount of hydrogen in the weld pool. Steel composition and cooling rate determines the HAZ hardness. Chemical composition determines material hardenability, and the higher the carbon and alloy content of the material, the greater the HAZ hardness. Section thickness and arc energy influences the cooling rate and hence, the hardness of the HAZ.
For a given situation therefore, material composition, thickness, joint type, electrode composition and arc energy input, HAZ cracking is prevented by heating the material. Using preheat which reduces the cooling rate, promotes escape of hydrogen and reduces HAZ hardness so preventing a crack-sensitive structure being formed; the recommended levels of preheat for various practical situations are detailed in the appropriate standards e.g. BS EN1011-2:2001. As cracking only occurs at temperatures slightly above ambient, maintaining the temperature of the weld area above the recommended level during fabrication is especially important. If the material is allowed to cool too quickly, cracking can occur up to several hours after welding, often termed 'delayed hydrogen cracking'. After welding, therefore, it is beneficial to maintain the heating for a given period (hold time), depending on the steel thickness, to enable the hydrogen to diffuse from the weld area.
When welding C-Mn structural and pressure vessel steels, the measures which are taken to prevent HAZ cracking will also be adequate to avoid hydrogen cracking in the weld metal. However, with increasing alloying of the weld metal e.g. when welding alloyed or quenched and tempered steels, more stringent precautions may be necessary.
The risk of HAZ cracking is reduced by using a low hydrogen process, low hydrogen electrodes and high arc energy, and by reducing the level of restraint. Practical precautions to avoid hydrogen cracking include drying the electrodes and cleaning the joint faces. When using a gas shielded process, a significant amount of hydrogen can be generated from contaminants on the surface of the components and filler wire so preheat and arc energy requirements should be maintained even for tack welds.

Reheat cracking

Reheat or stress relaxation cracking may occur in the HAZ of thick section components, usually of greater than 50mm thickness. The more likely cause of cracking is embrittlement of the HAZ during high temperature service or stress relief heat treatment.
As a coarse grained HAZ is more susceptible to cracking, low arc energy input welding procedures reduce the risk. Although reheat cracking occurs in sensitive materials, avoidance of high stresses during welding and elimination of local points of stress concentration, e.g. by dressing the weld toes, can reduce the risk.

Sumber : http://www.twi-global.com/technical-knowledge/job-knowledge/weldability-of-materials-carbon-manganese-and-low-alloy-steels-019/

Komentar

Postingan populer dari blog ini

Type of Welds (Jenis Jenis Lasan)

WELD TYPES  The MDOT Bridge Design Guides provide the Designer with standard pile welding details utilizing three different weld types: Full penetration groove welds  Partial penetration groove welds  Fillet welds  A full penetration groove weld is also known as a full penetration butt weld, or complete joint penetration (CJP) weld. When properly designed a CJP weld is stronger than the base metal of the sections it has joined. In order to create a successful full penetration weld, back gouging or a backer bar is used to ensure filler metal from the electrode is deposited throughout the entire cross-section of the weld. CJP welds are used for the H-Pile splice detail and the Pipe Pile detail. gambar 1. Full Penetration Weld A partial penetration groove weld or partial joint penetration (PJP) weld is similar to a full penetration groove weld with the exception that the base metal sections being joined are only partially penetrated by the weld metal. ...

NDT - Dye Penetrant Test

Dye Penetrant Test Gambar 1. Bentuk Alat Uji Dye Penetrant Test Dye Penetrant merupakan  metode NDT  untuk mengetahui ada tidaknya crack pada weld (hasil lasan). Test ini sangat mudah dilakukan dan pelaksanaannya juga sangat singkat. Prinsip Kerja Gambar 2. Prinsip Kerja Dye Penetrant Test Prinsip kerja dari metode Dye Penetrent Test adalah menggunakan cairan penetrant dengan memanfaatkan kemampuannya yang bisa meleweati celah discontinouity serta kerja developer untuk mengangkat kembali cairan yang meresap pada retakan, dengan begitu cacat pada material dapat terdeteksi Kelebihan dan Kekurangan Dye Penetrant Test Kelebihan : Mudah Diaplikasikan Murah dalam pembiayaan Tidak dipengaruhi oleh sifat kemagnetan material dan komposisi kimianya Jangkauan pemeriksaan cukup luas Kekurangan : Tidak dapat dilakukan pada benda berpori atau material produk  powder metallurgy.  Hal tersebut akan menyebabkan terserapnya cairan p...

NDT - Vacuum Test

Vacuum Test Gambar 1. Bentuk Alat Uji Vacuum Test Vacuum Test  merupakan pengujian yang dilakukan pada jalur yang sudah dilas ( welding seams ) untuk mendeteksi adanya kebocoran atau  crack .  Vacuum Test  ini dilakukan hanya pada  welding seams  yang ditemukan pada pelat yang datar ( tidak melungkung ) dan bukan pada pipa. Prinsip Kerja Vacuum Test  Gambar 2. Prinsip Kerja Vacuum Test Prinsip dasar dari Vacuum Test ini adalah mendeteksi kebocoran pengelasan dengan cara membuat udara disekitar benda yang akan diuji menjadi hampa udara  dengan menggunakan media semacam tabung dari bahan yang tembus pandang, kebocoran akan terdeteksi lewat alat ukur yang terpasang atau terlihat langsung dengan adanya busa / gelembung dari cairan air sabun yang tampak di dalam tabung. Prinsip kerja dari Vacuum Test adalah kebalikan dari prinsip kerja Air pressure Test. Kekurangan dan Kelebihan Vacuum Test Kelebihan : Power suppl...